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Abstract 

A software architecture is presented, which introduces several agents which focus on different as- 
pects of path planning for multiple autonomous unmanned aerial vehicles (UAV's) that are searching 
an uncertain and threatening environment for targets. One agent models threats in the environment. 
Another develops a model of the environment that allows targets to be defined by individual probability 
distribution. Lastly, an agent is presented that utilizes the information from the other agents to generate 
a near optimal path plan using a Dynamic Programming algorithm. 

1    Introduction 
Unmanned aerial vehicles (UAV's), such as the Predator [1], have been receiving an increasing amount of 
attention recently. The versatility of these craft, and their relative inexi>ensivene8s, make them api>ealing 
for use in many areas where the use of manned aircraft would be too dangerous to the pilot or too costly. 
However, the Predator, while unmanned, still requires a substantial amount of manpower to operate, as it 
is still piloted, albeit remotely from a ground station. It is desired, then, that future UAV's, similar to the 
Boeing X-45A [2], have higher levels of autonomy. 

However, directing autonomous agents such as these to behave in an "intelligent" manner constitutes 
a very interesting and challenging problem, especially in cases where there exist many constraints on the 
control of the agents. This is particularly true in the case of multiple autonomous unmanned aerial vehicles 
searching for targets in an uncertain environment. While the problem is a type of "search" problem, there 
are many factors present that set this problem apart from many of the classical search problems, such as 
those discussed in [6]. Even some standard methods of search become less desirable in the presence of a 
priori information and multiple vehicles, where the concept of cooperation among the vehicles is brought to 
the forefront. 

The great bulk of the work in cooperative path planning and decision is in the area of "point-to-point" 
paths, where the vehicles have a given destination or set of destinations to travel to, as in [7] and [8]. While 
this area has produced many good results, the methods utilized are not really suitable to search, where a 
vehicle's final destination is secondary to the exact route it takes (and the targets discovered thereon.) The 
first step in the cooperative search path planning decision process is to model the environment in a suitable 
manner for autonomous route planning. Some of these methods have been proposed recently in [5], [9], and 
in previous work on this topic that has been evolving in several other papers by the authors of this work: 
[3] and [4]. However, this paper differs from the previous work by creating an formal software architecture. 
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2.1    Search Gain Defined 
The Search Map Handler should produce a value that represents how valuable certain areas of the envi- 
ronment are to search. This value is termed "search gain." The search gain function should maximize the 
number of real targets (as opposed to false targets) detected or found. However, as the location and even the 
existence of the targets are based on random values, the expected number of targets detected will have to 
be maximized instead. In order to do this, the vehicle will have to choose which cells of the map to search. 
To find the maximum number of targets, a vehicle will want to search cells that have the highest number of 
expected targets in them. This expectation is based on the number of possible targets in the cell and three 
other factors. For a target i, let 

• F^ be the event that target i is detected in cell x. 

• 7^ be the event that target i actually is in cell x. 

• £7* be the event that target i exists (is a real target). 

In order for a target to be within a cell (event T^,) the target must first exist (event £'), thus T^ C E*. 
Also, since if a target exists, it must be somewhere, 

EP = [JTt- (1) 
X 

The expected probability of discovering target i in cell x is determined by the probabiUty of events F^, 
Ti, and E* all occurring (i.e. P(F* n T^ n E*)). But, since Tj C E\ P(F^ n 7^ n £*) = ^(^x <^ It), which 
can be written as 

p(Finrj = p(F^\Ti)P(rj (2) 

by conditional probabiUty. Since event £' completely includes event TJ, 

P(Ti) = P{Ti n £*) = P(TJE*)P{E'). (3) 

Putting these two equations together, 

P{Fi n T:) = P{Fi\rjP{Ti\E')P{E'). (4) 

P(FJ|r^) is the probability that a target is detected by a sensor search of cell x given that the target 
is in cell x. This is defined as the sensor efficiency, p, which for this work is assumed to be the same, and 
constant, for all cells and targets and to be available a priori (e.g. as a function of the sensor type.) Also, 
P(E^), the probability that target i is a read target, is labeled as ^*. Lastly, P{T^\E*) is the probability 
that, given that a target t is a real target, it is in a particular cell x. This can be found from the given 
distribution (uniform over the uncertainty area by default) of the target or from a priori information. This 
is not assumed to be the same for every target. 

Let w^ be a random variable such that 

:    if F*,7^, and £* all occur. ,. 
otherwise. ^ ' '■-{J 

This means that w^ = 1 if target t is detected in cell x and is 0 otherwise. Define the set of all possible 
targets in a cell x as G^. Let tr be a function that takes as an argument a cell (or a collection of cells), and 
returns the search gain for searching that cell (or the sum of the search gains for searching each individual 
cell in that collection of cells.) The search gain is then calculated by taking the expectation for finding 
targets in a cell x over {«>i}teG,, as shown here: 

<T(X)    =    E{# Targets detected in x} 

=   5^ {K'^(7^|£^)}. (6) 



2.2 The Search Map 
It is possible to efficiently store the values necessary to calculate the search gain from Ek). 6. First, the map 
is defined as a bounded rectangular area divided into discrete, equal-area cells. For each cell of the map 
there exists an array (or vector) that stores several values. The first value in the array is the product of the 
vehicle's search: a value that represents the reduction in uncertainty about what is in the cell because of the 
action of the vehicles. Let u^, the number of times a cell has been searched, represent this value for cell x. 

The second and subsequent values in the array are calculated based on information about particular 
targets that have some probability of being located in the cell. For each target, this can be found by taking 
the area in which that target may be found (e.g. the uncertainty region), and determining which of the map 
cells are within this area. Then, a value known as the relative probability value {C\.) for target i in cell x is 
cedculated, using the distribution that is given for that target. If no information is available a priori to create 
this distribution, it is assumed to be uniformly distributed over the whole search area. Each cell of the map 
holds an array (of the same size as the number of elements of Gx) of these C]. values for each target. Thus 
the total size of the array for each cell x is the number of teirgets that may be in the cell plus one (for Ux)- 

Note that when the probability value of one cell for a specific target changes, the value of every other 
cell where that target is possible would also change. Updating several celb any time a single one changes is 
not very efficient, especially when there tire a large number of cells. Thus the relative probability values are 
defined such that only the value of the cell that is searched is changed; the others do not change. 

How these relative probability values can then be used to calculate the search gain is shown. Let P^ be 
the probability of target i being in cell x (given that the target exists,) and let Ni be the number of cells in 
the uncertainty area of the target. So, 

Pi = PiTilE") =      »1"^^^.. (7) 

Now, Ax is a constant value for every cell, so 

Ex=i Q 

Then letting 

Ex=i Ci 
equation 7 simplifies to 

Pi = V'Cl (10) 

Since V and Q are the same for every cell for a particular i, these values do not need to be stored in the 
arraj^ for the cells of the map. Instead, these values can be stored as a list which records, for each target 
i, the C value and V value for that target. And so, (using Eq. 6 and Eq. 10) the search gain can now be 
written as 

"i^) = E K*^*^i}). (11) 
t6Gx 

where each of these values is available as a priori information (p) or from the search map «', V*,C*). 

2.3 Updating The Search Map 

For each target t € G^ and for all x that are searched by a vehicle at a certain time step (i.e. the cells that 
fall within the vehicle's sensor's footprint,) there are three (mutually exclusive) things that can occur before 
the next time step. They are 

• Target not detected. 

• Target detected but not found. 

• Target detected and fully found, or ttirget destroyed. 



2.3.1    Tetrget not Detected 

Let F^j be the event that target i is not detected on a search of cell xi. Now, on a search of the cell, either a 
target is detected or it is not, so P(F^,) + P(Fi^) = 1. This occurs regardless of whether the target actually 
exists in the cell or not, so P{P*^ |Tj,) + P(Fi^ ITj,) = 1. So, 

P{FiJ'n,) = i-PiK,\rJ. (12) 

Since P(FiJTiJ = p, 
p(Fi^n,) = (i - p)- (13) 

Now, when a cell is searched and target i not detected, the map would like to record the updated 
probabiUty that target i is in that cell (i.e. that it is really still there.) Assuming that the probabiUty of 
existence of the target does not change due to this sensor sweep, the updated probability that the target is 
located in the cell tifter the search (given that the target exists) is given by conditional probability as 

p(7:.i«.n^)).''«^-;ffiW'. (H, 

The fact that 7^ C F* means that if 7^, is given then event E* is given as well. This and Eq. 3 let Eq. 14 
be written as 

P(7^.IF,,,F ) p^pHjEi)P{E^) • ^^^^ 

The event whose probability is given by P(Fj, |F*) occurs under two conditions. The first is if the target 
is not located in the cell, an event with probability 1 - PiTlJE*). The second is if the target is in the cell, 
but that it was not detected, an event with probability P(FjJTJ,)P(7^JF*). Since these two events are 
mutually exclusive, the probabilities are additive. Using Eq. 13, this sum can be written as 

P{FiJE')    =    l-P(7:jF') + (l-p)P(7^JF^) 

=    l-pP{njE*). (16) 

Thus, Eq. 15 becomes 

/'(r.JF].,F^) = il^^^g|^. (17) 

Note that this update equation is valid only for the cell xi referred to by event FJ,, even though the 
probabilities of the target being located in all of the other cells on the map are also changed. Let xj be an 
arbitrary cell that is not referred to by event ^,. The poet priori (after event FJ^) probability of this cell 
(again, given that target i exists) is given by 

pinM,)p{njE') 

It is assumed for the purposes of this pap>er that the sensor will not misplace the target if it is detected, so 
if the target is in cell xj it will not be detected in cell xi and the probability P(FJi|7^,) = 1- Using this 
and Eq. 16, Eq. 18 becomes 

i'(T'JFi.,F*) = :^^^gL_. (19) 

The map handler now wishes to record the new (post priori) probability vtilues on the map. However, 
the map does not store the probability (PJ,) values directly. Instead, the relative probability values (C^^) 
are stored. Let xi be the cell that was searched and is being updated, and xj be any other arbitrary cell 
with C* ^ 0. To simplify the notation somewhat, a prime ( ' ) is used to represent a post priori value, 
(i.e. Pj^  = P(T^^|F]^,F*) for n = {1,2}.) Now, the relative probability values are defined so that 

C*        P* 
# = # (20) 
^X2 ' Xt 
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and . , . , 

(21) 

However, C^,' = Cj,, since only C'^ was searched. Using Eq. 17 and Eq. 19, 

< _ Pi! _ (l-P)Pi. f22) 

Now, using equation 20, 

c5" = ~"a—• ^   ' la «a 

Therefore, 
Ci/ = (l-p)Ci,. (24) 

So for the case where a cell is searched and a target is not detected, use Eq. 24 to update the value of the 
firray for cell x for that target. No other cell value is changed, but the value of V must also be updated. 
Since the changes to the map are made incrementally and one cell at a time, this allows the value of V* to 
be changed in the same manner, so that a running value can be easily maintained. Now, 

V* = i r- (25) 

It is desired that the Cx^ term in the denominator be updated with the new value C\.^ . Thus, V* can be 

updated (to V* ) by using 

V'' = -, \ . (26) 

2.3.2 Tiirget Detected 

If a target t is detected, then remove all previous entries for that target (i.e. all the C^ values) from the 
arrays of all of the cells. Now, the C\. values must be generated using the new target information based on 
the new distribution that is available because the target was detected. Then store this information in the 
proper arrays of the cells of the map, making sure to record the C' value for that target also. Next, the C^ 
values must be updated to account for any searching in the cells that has already occurred previously. For 
e{u:h cell in the area of the new distribution of that target, apply equations 24 to the map values a number 
of times equal to the value of v^ for that cell. The value of V* is also calculated and stored. 

2.3.3 Target Fbund / Destroyed 

This requires the removal of the target from the map entirely, since the target is no longer a candidate for 
search, either because it does not exist anymore, or because its location is known with enough certainty. In 
this case, remove it from the array of possible targets for every cell. Its value will no longer be used when 
calculating the number of (uncertain) targets expected to be found in a search of any particular cell. 

3    The Threat Map Handler 

This section describes how threats are modeled in a form that can be incorporated efficiently by the Threat 
Map Handler and stored by the Threat Map Information Base. 

The level of danger to a flying UAV may depend on several ftwitors, which include any one or several 
threats from opposing forces, including SAM sites or random ground fire, or the terrain itself in the form of 
hills, mountains, etc. Since several of these factors have a direct relationship to altitude, this must also be 
explicitly accounted for. 

(i. 





value above which altitude does not change the threat range (until 0^01 is reached). It is assumed that the 
minimum altitude is 0, and that the minimum safe distance boundary can be given as a line. Thus, 

1° \     * max 

V    "lop ' 

flu ^ ^max 

rj(o„) = {   r„ox atop < a„ < a^ax (29) 
-(.rmax - ro) + ro 0 < o„ < atop 

Let Di be the probability of being destroyed by threat t. This is given by 

«i = {^ otherwise 

The value of T' € [0,1] for threat t is assumed for this paper to be a constant for over the whole area covered 
by that. 

The threat map handler records the location and type of all SAM's. Then, for a given UAV's location, 
it can calculate the threat level from a SAM to the UAV using the information about the profile for that 
type of SAM. Then, to determine the total threat level to a UAV, the map handler cfilculates the values for 
Dg, Df, and D| for for fill threats t = 1,... ,n that threaten a vehicle at a given (x„,i/„,a„) location using 
Eq. 27, Eq. 28, and Eq. 30. The total threat (d) facing a vehicle at that location in the environment can 
then be found by: 

d = 1 - [(1 - Dg)(l - Df)(l -£>•)...(!- DDl (31) 

4    The Planning Agent 
The Planning Agent takes the information fix»m the other agents and uses it to decide the path that produces 
the most expected targets detected over (ideally) the entire lifetime of the vehicle, which is N time steps, or 
(non-ideally) a smaller, more feasible, planning horizon, which is defined as q {q < N) time steps. 

In order for the vehicles to plan their trajectories, they need to know information about the state of the 
environment. The true state of the environment, after discretization, is represented by: (1) an information 
base like those maintained by the agents, except that it is updated by every vehicle at every time step 
(producing an ideal information base); and (2) by the locations and headings of the vehicles. This true state 
is denoted by ij. The state, as perceived by an individual vehicle, is denoted as i*. Under ideal conditions, 
every vehicle will perceive the state as being the tnje state (ij = xfc,) but in the non-ideal case, each vehicle 
may have a different perception based on the information available to it. 

The choice of which path to travel for a vehicle at time k is the decision, or control ufc, where uk € U, 
where £/ is a set that contains the choices that the vehicle can take (for example: turn 15° left, go straight, 
or turn 15° right.) Let J^ be defined as the "cost-to-go" function from time step k to N. Then, the best 
path at time step k can be found from utilizing the DP recursion over the planning horizon (ideal) k to N 
or (non-ideal) k to k +q: 

Jfc(xfc) = max({5(xfc,ufc) -I- Jfc+i(/(xfc,ufc)}) (32) 

where p(xfc,Ufc) is the one-step gain function. Note that if the expectation of the stochastic elements is 
encapsulated and contained within the gain function then this is a deterministic equation, and can be solved 
using a shortest-path algorithm. 

To ensure cooperation, the other vehicles £ire modeled as stochastic elements, where a random quantity 
tufc is used to represent the loss in search gain actually received by the vehicle compared to what was 
expected when the decision was made because of interference by another vehicle. The vehicles can then use 
the expected result of this Wk to plan where to go to avoid undue interference. 

The one-step gain at each step is then the expected search gain one would get if no interference were 
present minus the expected amount of search gain one would lose from another vehicle interfering, 

9{xk,uk) = E{a - Wk} (33) 
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This one-step gain is then used in the DP recursion (Ek)uation (32)) to determine the expected optimal path. 
The amount of interference a vehicle expects is a fimction of p, a, and the probability of another vehicle 

interfering, which is denoted as $. So 
E{wk} = pa^ (34) 

Adding in the interference calculations, we have 

g = E{a - Wk} = ff - pa^ (35) 

Where a is the search gain (with no interference,) p is the sensor efficiency, and * is the probability of 
interference. This value $ € [0,1] provides penalties to the vehicles for searching areas that have some 
probability of being searched by another vehicle first. In effect, it forces the vehicles to spread apart. This 
is covered in much more detail in [3] and [4]. 

4.1 Adding Threats into the Planning algorithm 
Threats can be incorptorated into the decision model by recognizing what happens to a vehicle if it enters a 
threatened area: 1.) nothing happens (i.e. the vehicle travels as normal) or 2.) the vehicle is shot down, or 
crashes, and is destroyed. There is assumed, for the moment, to be no intermediate states (i.e. no damaged 
state.) Having a vehicle destroyed means that the vehicle is no longer available to search for the remainder 
of this mission (or tiny future mission, either.) So, there is now a new state that a vehicle can enter at any 
time during the mission: dead. If a vehicle is destroyed at time k, it will move to this state for time step 
A; + 1 {ind its one-step gain {gk+x) for this state and for all future states will be 0 (since the vehicle cannot 
leave the deitd state.) However, any gain it had previously received it will not lose. 

Additionally, if the vehicle is destroyed, there is also a cost for not being available to use in future 
missions. So, Jsi the final reward at the end of the mission, now has two different values. If a vehicle is 
destroyed during the mission, JN should be 0, as this represents that the vehicle cannot provide any more 
gain in any future missions. If a vehicle is not shot down, JN should be X, where X is a positive reward for 
not being destroyed, and represents the value of having the vehicle available for future missions. 

4.2 Utilizing the Information from the Search and Threat Map Handlers 
Continuing with this analysis, we can now write the expected cost-to-go (or reward) for taking an arbitrary 
path by expanding the recursion Ekj. 32: 

E{Jfc} = (l-dfc)kfc-p<^fc*fc + 
(1 - dk+i)[ak+i - p<Tfc+i*fc+i -I-... -I- 
(1 - dfc+,)K+, - p<Tfc+,*fc+, -I- X]]]. (36) 

Renaming (1 — dj) as «j for arbitrary i, factoring out a, and letting /< = (! — p'ii), E)q. 36 can be written 
as 

E{Jik} = SllOkh + Sk+l[Ok+\Ik+\ +... + 8k+q[<Tk+qh+q + X]]] (37) 

which then C{ui be decomposed into succinct time steps by letting 

i 

Si = ]lsj (38) 
j=i 

and then noting that now 

E{Jfc} = WkSkh] + [ok+iSk+iIk+i] + ... + [fffc+,(5fc+,/fc+,] -I-Sk+gX (39) 

So all the terms for a certain time step are collected together. Since the one-step gain at a particular time 
step depends only on the current and previous time steps, these can be converted to a cost (distance) and 
can be solved as a shortest-path problem like those found in [3] and [4]. 





interfere. This would lessen the amount of penalty to the search gain which forces the vehicles away from 
one another when searching critical, but dangerous, areas. Additionally, the presence of targets that may 
be detected and require another vehide to take a second look could eliminate the effect of the interference 
in certain cases. 
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